[bookmark: h.mxibbyejty8f][bookmark: _GoBack]Android Lecture 3 (Sept-02-2014)
[bookmark: h.5x6f2sseuy3w]
[bookmark: h.fpaom7keoh1m]Simple Game “MoleMesh”

1.	Create a new project called “MoleMesh”
2.	Add a Canvas to the work area. Canvas is available in the Drawing and
Animation drawer.
3.	Change the “Width” and “Height” properties of the Canvas. Set the width to “Fill
Parent” and set the height to 300.(By changing to Fill Parent in the Width property will make use of the entire screen width is available).

[image:]

4.	Add an “ImageSprite” to the work area. ImageSprite is available in the Animation drawer. ImageSprites works on the Canvas.

What is an ImageSprite ? Where it is Available
[image:]

5. Rename the ImageSprite to “MoleSprite”.
6. Download the Mole.png from webpage and and use it as the picture of the ImageSprite.

7. Insert a “Clock” from the Sensor Component drawer. (This is a Non-Visible Component).

8. Change the “TimerInterval” property of the Clock1 component to 1000
(1000 miliseconds is equal to a one second. if you like make it to 500, then it will appear every half a second.

[image:]

9. Now go the the Blocks view and choose the Clock1 component.
10. Select the Clock1.Timer event.

[image:]

11. Select the MoleSprite and choose the “MoleSprite.MoveTo”

[image:]

12. Connect those to blocks together as it shown below

[image:]
13. In order to mover the ImageSprite(MoleSprite) randomly on the Canvas (screen), we need to program it with a randomness behavior. To do that, we use random integer that generates between 1 and 0 and assign it to the way we want.

14. Randon Integer block

[image:]

15. change the “random integer from 1 to “Canvas1.Width”. Set the “x” value as shown below.

[image:]

16. Do the same way to set the “y” value

17. Now You should be able to see the Mole is running around on the screen. But this is not precise compared to the screen area. Therefore, we will change the code block to make it move more precisely over the screen.

Listen to my explanation during the class why follow these steps.

18. Now Conduct the following steps as I shown below.

use a “minus” block
[image:]

then set the Canvas1.Width block to the first socket

[image:]

set the MoleSprite.Width to the second socket of the “minus block”

[image:]

Connect that to the “x” values section where the “randon integer to” socket as shown below.

[image:]

19. Do the same way for the “height” section, it will look like this,

[image:]

We will program the scoring part of the game. every time user touch the mole, it will add a point to the existing score.

20. Add a Label component to show the Score, rename it to “ScoreLabel”
21. change the “Text” of the Label2 to “0” as you initialize the game.

22. You can use the Horizontal Alignment to make these labels appear hrizontally next to each other (we did similar thing during last class)

23. Now go to MoleSprite, and chose the

[image:]

23. get the “ScoreLable.Text” and connect to the MoleSprite.Touched

[image:]

24. get a Text block and change it to the “1” as shown
[image:]

 [image:]

25. set the Text block to the block above blocks

[image:]

But we need to change this to increment the score as we touch the Mole everytime.
in order to do that, use the “plus” operation to add the previous value to the new value. Then replace the “text 1” block with the following block.

[image:]

it will look like this (delete the “text 1” block now) i used it for the demonstration purpose and also to check the App is so far working properly on the emulator.

image6.png
cat x
MoleSprite MoveTo (J

image7.png

image8.png

image9.png

image10.png
A camasiman |- (]

image11.png
7 % wotesprewan_|

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png
g ScoreLabel. g TRy,

image1.png
Width
Fill parent...

Height

image2.png

image3.png

image4.png

image5.png
can =
MoleSprite MgyeTo J

(R)

